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ADMIT-1 enables the computation of sparse Jacobian and Hessian matrices, using automatic
di�erentiation technology, from a MATLAB environment. Given a function to be di�erentiated,
ADMIT-1 will exploit sparsity if present to yield sparse derivative matrices (in sparse MATLAB
form). A generic automatic di�erentiation tool, subject to some functionality requirements, can
be plugged into ADMIT-1; examples include ADOL-C (C/C++ target functions) and ADMAT
(MATLAB target functions). ADMIT-1 also allows for the calculation of gradients and has several
other related functions. This paper provides an introduction to the design and usage of ADMIT-1.
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1. INTRODUCTION

The eÆcient numerical solution of nonlinear systems of algebraic equations F (x) =
0, F (x) : <n ! <m, usually requires the repeated calculation or estimation of
the matrix of �rst derivatives, the Jacobian matrix, J(x) 2 <m�n. In large-scale
problems, the matrix J is often sparse and it is important to exploit this fact in
order to eÆciently determine, or estimate, the matrix J at a given argument x.

Similarly, the eÆcient numerical solution of numerical optimization problems in-
volving a scalar valued function, f(x) : <n ! <, may require repeated computation
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of the second derivative Hessian matrix H(x) 2 <n�n. The symmetric matrix H(x)
is often sparse; it is important to exploit this sparsity in order to eÆciently compute
the matrix H at a given argument x.

In this paper we present software to compute sparse Jacobian and Hessian ma-
trices eÆciently and painlessly using automatic di�erentiation(henceforth referred
to as AD) technology. ADMIT-1 is a MATLAB toolbox, which uses a generic AD
plug-in tool (any AD tool can be used provided it satis�es the functionality criteria,
which we describe in x4) to implement the sparse Jacobian and Hessian computing
engines. The requirements from the users are minimal: the user is just required
to supply the code for the function computation. For complete information on the
ADMIT-1 toolbox, refer to the ADMIT-1 user manual [12]. There has been an
earlier implementation of AD in MATLAB [25] (Thanks to the anonymous refree
for pointing this out).

Automatic di�erentiation is a chain rule based technique for evaluating the deriva-
tives analytically (and hence without any truncation errors) with respect to input
variables of functions de�ned by a high-level language computer program [20; 18;
19; 2]. We present a basic review of automatic di�erentiation in x2.

Large scale nonlinear problems often exhibit structure, e.g., partial separabil-
ity, composition, discrete time optimal control forms, and inverse structure. The
derivative matrices of these structured computations are typically dense; however,
it is possible to de�ne sparse extended derivative matrices [11; 10] which can be
computed using ADMIT-1. It is also possible to compute gradients (a special case
of Jacobians) of structured computations by exposing the sparsity in an associ-
ated extended Jacobian matrix [7]. The software for structure computations is
presented as a separate MATLAB toolbox, ADMIT-2 [15], an extension of the
ADMIT-1 toolbox.

This paper is outlined as follows: In x2, we give a brief background on AD followed
by a review of the sparsity exploiting techniques to compute the sparse Jacobian
and Hessian matrices in x3. In x4 we present the software design of ADMIT-1 tool.
In x5, we present a detailed usage of ADMIT-1 in a nonlinear equation solution
using the Newton step. In x6 we present the algorithms and numerical results.
In x7, we explore the di�erent sparse derivative evaluation methods available in
ADMIT-1 and provide examples on how to use them. In the appendix we present
brief description of the functionality of some main ADMIT-1 functions.
The ADMIT-1 software and related information can be accessed online on WWW

at the URL : http://www.tc.cornell.edu/UserDoc/Software/Num/ad.

2. AUTOMATIC DIFFERENTIATION BACKGROUND

Automatic di�erentiation is based on the fact that all computer programs, no mat-
ter how complicated, use a �nite set of elementary functions as de�ned by the
programming language. The function computed by the program is simply a com-
position of these elementary functions. The partial derivatives of the elementary
functions are known, and the overall derivatives are computed using the chain rule;
this process is known as automatic di�erentiation [18].
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Abstractly, the program to evaluate the solution u (an m-vector) as a function
of x (generally a n-vector) has the form

x � (x1; x2; : : : ; xn)
#

z � (z1; z2; : : : ; zp); p� m+ n
#

y � (y1; y2; : : : ; ym)

where the intermediate variables z are related through a series of these elementary
functions which may be unary,

zk = fkelem(zi); i < k;

consisting of operations such as ( -, pow(�), sin(�), . . . ) or binary,

zk = fkelem(zi; zj); i < k; j < k:

such as ( +, /, . . . ).

There are a number of cases when the elementary function is not di�erentiable
(e.g. fkelem(zi) = abs(zi) or fkelem(zi; zj) = max(zi; zj)). Sophisticated heuristic
techniques are developed to treat these cases. For more details consult [18].
Automatic Di�erentiation has two basic modes of operations, the forward mode

and the reverse mode. In the forward mode the derivatives are propagated through-
out the computation using the chain rule, e.g. for the elementary step zk =
fkelem(zi; zj) the intermediate derivative, dzkdx can be propagated in the forward mode
as:

dzk
dx

=
@fkelem
@zi

dzi
dx

+
@fkelem
@zj

dzj
dx

:

This chain rule based computation is done for all the intermediate variables z and
for the output variables u, �nally yielding the derivative du

dx .

The reverse mode computes the derivatives du
dzk

for all intermediate variables

backwards (i.e., in the reverse order) through the computation. For example, for
the elementary step zk = fkelem(zi; zj), the derivatives are propagated as:

du

dzi
+ =

@fkelem
@zi

du

dzk
and

du

dzj
+ =

@fkelem
@zj

du

dzk
:

At the end of computation of the reverse mode the derivative du
dx will be obtained.

The derivatives in the adjoint mode are propagated in an incremental form in the
adjoint mode because the arguments of the elementary function may appear again
in the forward evaluation process, all the derivatives are initialized to zero.
The forward and reverse modes can be used to compute the direct and the adjoint

products, Jv and JT v given a vector v, where J is the Jacobian of a nonlinear
mapping [18]. Both these computations require time proportional to one function
evaluation, with the adjoint product being approximately twice as costly as the
direct mode. The Hessian-vector product Hv can also be computed via AD in time
proportional to one function evaluation.
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3. COMPUTATION OF SPARSE JACOBIAN AND HESSIAN MATRICES

In this section we review the techniques for computing sparse Jacobian and Hessian
matrices. For details on this subject refer to [14; 9; 8; 4].

Sparse �nite di�erencing techniques were �rst introduced by Curtis, Powell and
Reid [16]; Coleman and Mor�e [9; 8; 4] and Newsam and Ramsdell [23] further devel-
oped these ideas using graph-theoretic interpretations. Recently, related methods
were developed to be used in conjunction with AD tools instead of �nite di�erencing
[14; 1; 3].

3.1 Computation of a sparse Jacobian

One way to approach the problem of estimating a sparse Jacobian matrix of a
mapping F : <n ! <m, is in the following terms : given a sparse m� n matrix J ,
obtain vectors d1; d2; : : : ; dp such that the products Jd1; Jd2; : : : ; Jdp determine J
uniquely. For example, if J is diagonal, then d1 = e (a vector of all ones) suÆces
since Je determines all nonzeros of J uniquely. If J is tridiagonal, then only three
products are required, Jd1; Jd2 and Jd3 where d1 = e1 + e4 + e7 + : : : ; d2 =
e2 + e5 + e8 + : : : ; d3 = e3 + e6 + e9 + : : :. The matrix J can then be reconstructed
because each nonzero entry of J appears in one of Jd1; Jd2 or Jd3. This approach
is called the one-sided column approach for computing a sparse Jacobian [9; 5;
16]. The alternative row approach can be phrased: obtain vectors d1; d2; : : : ; dp
such that the products JT d1; J

T d2; : : : ; J
T dp determine J uniquely. The vectors

di determined completely by the non-zero structure of J . This method cannot be
implemented using �nite di�erences based on F ; however, AD can be used in the
reverse mode to compute products JT d.

The new bi-coloring approach [14], which combines the row and column views, is
an eÆcient approach for minimizing the cost of computing a sparse Jacobian matrix
of a nonlinear map, employing AD. The authors show how to de�ne \thin" matrices
V and W such that the nonzero elements of J can easily be extracted from the
calculated pair (W T J; JV ). The pair (W TJ; JV ) can be directly computed using
AD given an arbitrary n-by-tV matrix V and and an arbitrary m-by-tW matrix,
employing the forward mode for computing JV and the reverse mode for computing
W TJ . A similar approach outlining the computation of the sparse Jacobian using
rows and columns was done by Hossian and Steihaug [22].

The motivation for taking this 2-sided view comes from the following observa-
tions. The one-sided column solution based on a column partition de�nes a matrix
V such that J can be determined from the product JV . However, matrix V is not
guaranteed to be thin, even if J is very sparse : consider a sparse matrix J with
a single dense row. Alternatively, a solution based on partitioning of rows can be
employed to de�ne a matrix W such that J can be determined from W T J . Again,
it is easy to construct examples where de�ning a thin W is not possible : e.g.,
consider the case where J has a single dense column.

Bi-coloring circumvents this problem, and is never worse than 1-sided coloring.
Here is a simple example which demonstrates the advantage of bi-coloring. Consider
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the following n-by-n Jacobian, symmetric in structure but not in value:

J =

0
BBBB@

2 4 4 4 4
2 3

2 3

2 3

2 3

1
CCCCA : (1)

It is clear that a partition of columns consistent with the direct determination of
J requires n groups. This is because a \consistent column partition" requires that
each group contain columns that are structurally orthogonal and the presence of a
dense row implies each group consists of exactly one column. Therefore, if matrix
V corresponds to a \consistent column partition" then V has n columns and the
work to evaluate JV by the forward mode of AD is proportional to n � !(F ). By
a similar argument, and the fact that a column of J is dense, a \consistent row
partition" requires n groups. Therefore, if matrix W corresponds to a \consistent
row partition" then W has n rows and the work to evaluate W T J by the reverse
mode of AD is proportional to n � !(F ). In this example the use of a bi-coloring
dramatically decreases the amount of work required to determine J . Speci�cally,
the total amount of work required is proportional to 3 � !(F ). To see this de�ne
V = (e1; e2 + e3 + e4 + e5); W = (e1), where we follow the usual convention of
representing the ith column of the identity matrix with ei. Clearly elements 2, 3
are directly determined from the product JV ; elements 4 are directly determined
from the product W TJ .

A graph-theoretic interpretation of the determination problem can be constructed
based directly on Jacobian structure. The associated graph coloring problems are
known to be NP-complete [14; 17]; therefore, heuristic schemes are considered
to construct the \bi-partition". For more insight into the problem involved and
algorithmic details, refer to x6.

Below are performance results obtained for bi-coloring summarized from [14]:
Table 1 shows the summary of the performance of bi-coloring on a linear program-
ming testbed of matrices; Table 2 shows the performance on the Harwell-Boeing
collection. The numbers in the tables denote the total number of Jacobian ma-
trix products (forward Jd or adjoints JT d) needed to compute the sparse Jacobian
matrices in the collection.

Bi-coloring 1-sided Coloring

Direct Substitution column row

337 270 1753 452

Table 1. Totals for LP Collection (http://www.netlib.org/lp/data/)

Also, similar to the results reported in [1] for forward-mode direct determina-
tion, the Jacobian matrices determined by our bi-coloring/AD approach are sig-
ni�cantly and uniformly more accurate than the �nite-di�erence approximations
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Bi-coloring 1-sided Coloring

Direct Substitution column row

320 244 732 738

Table 2. Totals for Harwell-Boeing Collection (ftp from orion.cerfacs.fr)

(usually around 6 digits more than FD). This is true for both direct determina-
tion and the substitution approach. Second, the direct approach is uniformly more
accurate than the substitution method. The Jacobian matrices determined via sub-
stitution are suÆciently accurate for most purposes, achieving at least 10 digits of
accuracy and usually more. For comparison on accuracy of these methods we refer
the reader to [14].

In x6, we present an overview of implementation of the one-sided column and
row methods and the bi-coloring method in ADMIT-1 software.

3.2 Computation of a sparse Hessian

In this section we review the techniques to compute sparse Hessian matrices. It is
well known that the productr2f(x)�d can be computed using AD, or approximated
by �nite di�erencing. When the nonzero structure of r2f(x) is known, then usually
a few well chosen directions d1; d2; : : : ; dp are needed to compute all the nonzeros
of r2f(x) using the products r2f(x)d1;r

2f(x)d2; : : : ;r
2f(x)dp.

The algorithms that we have implemented are based on the work of Powell and
Toint [24], and Coleman and Mor�e [4; 8; 5]. These authors consider direct and
indirect(substitution) methods; indirect methods usually require fewer function (or
gradient) evaluations while direct methods produce more accurate approximations
to the Hessian matrix H . For a complete review on this subject, refer to Coleman
and Cai [4].
Let G represent the adjacency graph of H . In summary, there are basically three

di�erent ways to compute a sparse Hessian :

(1) Ignoring the symmetry : This is exactly like single-sided Jacobian problem:
symmetry is ignored, i.e., Hi;j and Hj;i are computed independently. Since,
the intersection graph of H is given by the adjacency graph of matrix H2, the
minimum number of groups needed to compute the Hessian via this method are
denoted by �(G2). The intersection graphs and their construction are explained
in detail in x6.

(2) Direct { exploiting symmetry : This is the path-coloring method as de-
scribed in [8]. The minimum number of function evaluations are given by the
path coloring chromatic number which is denoted by ��(G).

(3) Substitution { exploiting symmetry : This is the cyclic-coloring method
as described in [4]. The complexity in this case is given by the cyclic coloring
chromatic number which is denoted by �0(G).

Since every cyclic coloring of G is a coloring of G, and every coloring of G2 is a
path coloring of G, and a path coloring a cyclic coloring, we get the following string
of inequalities :
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�(G) � �0(G) � ��(G) � �(G2)

ADMIT-1 software provides methods for computing the sparse Hessian matrix
using any of the three methods. We present an example in x6 which illustrates the
selection of any of above three methods for computing a Hessian matrix.

4. SOFTWARE DESIGN OF ADMIT-1

The high-level design of the ADMIT-1 toolbox is shown in �gure 1. ADMIT-1
takes an AD tool as a plug in (shown in the top box) and takes as input the user-
de�ned nonlinear function (\fun") and outputs a sparse Jacobian or Hessian matrix
as required by the user. A generic AD tool, with functionality described in x4.1, is
required.

‘fun’  

AD TOOL

Sparse J/H

C/MATLAB Program

ADMIT-1

Fig. 1. Design of ADMIT-1 toolbox

The core of the ADMIT toolbox is formed by two routines, evalJ and evalH, with
usage described in appendix A. ADMIT-1 uses the sparse techniques for computa-
tion of sparse Jacobian and Hessians as outlined in x3(and other derivative infor-
mation like gradient and Jacobian matrix products etc.). Refer to the appendix to
learn about additional functionality of ADMIT-1.

4.1 Expected design of the underlying AD tool

The underlying AD plug-in tool is expected to have both reverse and forward modes
of automatic di�erentiation. If the AD tool has only the forward mode then it can
be plugged into ADMIT-1, but cannot take advantage of the bi-coloring technique
to evaluate the sparse Jacobian matrix. In particular, the following �ve capabilities
from the AD tool are recommended in order to qualify as a plug-in tool for ADMIT-
1 (�rst three for the Jacobian/gradient evaluations and the last two for the Hessian
evaluation). ADMIT-1 requires the source �le (e.g., C or MATLAB depending on
target functionality of the plug-in AD tool) for the input function. The design of
the user function is outlined in x5.

The �ve functionality features expected from the AD tool are listed below. The
function f : <n ! < is a scalar-valued function and F : <n ! <m is a vector-valued
function.

(1) Jacobian-Matrix (forward) product. (F; x; V )! J(x)V .
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(2) Matrix-Jacobian (reverse) product. (F; x;W ) ! J(x)TW .

(3) Jacobian Sparsity Pattern. F ! SPJ .

(4) Hessian-Matrix product. (f; x; V )! H(x)V .

(5) Hessian Sparsity Pattern. f ! SPH .

SPJ and SPH stand for the sparsity patterns of the Jacobian and Hessian matrix
respectively. ADMIT-1 requires that the AD plug-in tool compute these sparsity
patterns automatically.
Note that gradient computation is a special case of these requirements, since

computing the gradient is equivalent to a reverse product with W = 1, a scalar,
the reverse product = rf(x) = JT .

The packages ADOL-C [21] and ADMAT [13] satisfy the requirements listed
above.
The sparse Jacobian and Hessian matrices can be computed using a method of

your choice, e.g., bi-coloring. ADMIT-1 provides ADOL-C drivers for the above
functions, described in appendix B. An AD tool which implements only the forward
mode can also be used as an ADMIT-1 plug-in, albeit with restricted features. For
example, the bi-coloring technique is replaced with the 1-sided column method. If
you need to compute only the �rst order derivatives, then an AD tool which has
the �rst three features can be used as an ADMIT-1 plug-in.

5. EXAMPLE OF ADMIT-1 USAGE FOR NONLINEAR EQUATION SOLUTION

In this section we illustrate a local nonlinear equation solver, based on a sequence
of Newton steps, using ADMIT-1.

5.1 User function design

First, we describe the design of the functions that can be used with ADMIT-1. Here
we present the expected designs of C/C++ target functions (with ADOL-C as the
plug-in AD tool) and MATLAB target functions (with ADMAT as the plug-in AD
tool).

If ADOL-C is the plug-in AD tool, the design of the target C/C++ function is
as follows. The function must be named getfun.

void getfun(oat* x,int n,oat* y ,int m, oat *Extra, int *numrows, int *numcols)
f

/* Compute y = F(x) here */

g

The input argument x is a vector of dimension n; y is the output vector of
dimension m. Extra is a 1-dimensional array corresponding to a 2-dimensional
(full) matrix stacked column-by-column. The matrix represented by Extra is of size
numrows-by-numcols.

If ADMAT is the plug-in AD tool, the design of the target MATLAB function is
as follows.
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function y = getfun(x,Extra)

% Compute y =F(x) here

end

Here is a simple example illustrating how to use ADMIT-1 to calculate the Ja-
cobian of the function y = F (x); F : <n ! <n where

y(1) = 2x(1)2 +

nX
1

x(i)2;

y(i) = x(i)2 + x(1)2; i = 2 : n:

The Jacobian of function F has an arrowhead sparsity structure, as shown in
Figure 2 for n = 50.
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nz = 148

Fig. 2. The sparsity structure of Jacobian J

ADMIT-1 when using ADOL-C as the plug-in AD tool requires a C program
(examplefun.c) to evaluate F :

void getfun(oat* x,int n,oat* y,int m, oat *Extra, int *numrows, int *numcols)
f

int j;

/* Nonzero Diagonal */
for (j=0;j<m;j++)

y[j]=x[j]*x[j];
for(j=0;j<m;j++)
f

/* Dense �rst row */
y[0]=y[0]+x[j]*x[j];
/* Dense �rst column */
y[j]=y[j]+x[0]*x[0];

g
g

To evaluate the function F and the Jacobian J at x0 = (1; 1; :::; 1) for n = 5:
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>> x=ones(5,1); n = 5;
>> fun='examplefun'; JPI = getJPI(fun,n);
>> [f,J] =evalJ(fun,x,[],[],JPI);
>> f
f =

7
2
2
2
2

The function call \getJPI" extracts sparsity/coloring information. As illustrated
in the Newton iteration example in x5.2, only one execution of \getJPI" is required
for a given target function.

To use ADMAT as the plug-in AD tool instead of ADOL-C , the same MATLAB
script for evaluating the Jacobian can be used with the MATLAB version of the
function:

function f= examplefun(x,m,Extra)
y=x.*x;
y(1)=y(1)+x'*x;
y=y+x(1)*x(1);

5.2 Newton Process for nonlinear equations F(x)=0

Suppose that the user has a MATLAB routine to compute the nonlinear function
F (x) and needs to solve F (x) = 0 for the vector x. A typical method is to employ
the Newton iteration method and ee illustrate this method using ADMIT-1 via an
example. The example target function is the \Broyden" nonlinear function. Here
is the shell (MATLAB) program:

>> fun = 'broyden';
>> itbnd=100;
>> tol= 1e-6;
>> xstart=[zeros(50,1);0.2*ones(50,1)];
>>
>> %get the Coloring Info Once and for all
>> JPI= getJPI(fun,100);
>>
>> [x,it,norm] = newton(fun,xstart,tol,itbnd,JPI);
>> cleanup
>> exit

The Broyden nonlinear function is listed here :

function fvec= broyden(x,Extra);
% Evaluate the Broyden nonlinear equations test function.

n = length(x); fvec=zeros(n,1);
i=2:(n-1);
fvec(i)= (3-2*x(i)).*x(i)-x(i-1)-2*x(i+1)+ones(n-2,1);
fvec(n)= (3-2*x(n)).*x(n)-x(n-1)+1;
fvec(1)= (3-2*x(1)).*x(1)-2*x(2)+1;

Finally we list our M-�le containing the Newton procedure.
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function [x,it,nf]= Newton(fun, xstart, tol, itbnd, JPI)
% Initializations
n=length(xstart);
if (nargin < 3) tol=1e-5; end
if (nargin < 4) itbnd=60; end
n=length(xstart); x=xstart;

% First Evaluation
[f,J]=evalJ(fun,x,[],[],JPI);
it=0;

% The Newton Iteration
while ((norm(f) > tol) & (it < itbnd))

delta= -Jnf;
x=x+delta;
[f,J]=evalJ(fun,x,[],[],JPI);
it=it+1;

end

nf=norm(f);

The function Newton uses the ADMIT-1 driver function evalJ to compute the
Jacobian matrix and use it in a subsequent Newton step computation. ADMIT-1
functions can be plugged-into optimization algorithms to provide an eÆcient and
accurate solution to nonlinear problems.

6. ALGORITHMS

In x2 we reviewed the techniques for computing sparse Jacobian and Hessians used
in the ADMIT-1 software. In this section, we present the algorithms involved in
implementing the graph-theoretic techniques.

6.1 Computing sparse Jacobians

There are basically �ve di�erent options to compute a sparse Jacobian matrix using
ADMIT-1. These di�erent methods correspond each to a di�erent partition which
can be computed by solving a graph coloring problem on appropriately de�ned
graphs [9]. The chromatic number of a graph is de�ned as the least number of colors
required to color the graph, or in other words, the least number of groups required to
compute the Jacobian matrix. The method and corresponding chromatic numbers
are illustrated in Table 3.

Method Chromatic number notation

One-sided column method �c(J)
One-sided row method �r(J)

Finite di�erencing method �f (J)
Direct bi-coloring method �d(J)

Substitution bi-coloring method �s(J)

Table 3. Various Methods for computing sparse Jacobian matrices

The algorithm involved for the �nite di�erencing method is the same as the
one-sided column AD method except that the former uses �nite di�erences to ap-
proximate the product Jd. The various chromatic numbers satisfy the inequality
:

�s(J) � �d(J) � min(�c(J); �r(J)) (2)
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Inequality (2) holds since bi-coloring subsumes both one-sided coloring tech-
niques; for more details, refer to [9].

6.1.1 The one-sided algorithms. We �rst review the algorithms for the one-sided
methods. The one-sided column method involves coloring the column intersection
graph of the Jacobian sparsity structure. For a detailed treatment on this subject,
please refer to Coleman and Mor�e [9]. The method implemented in ADMIT-1 is
outlined in the following pseudo MATLAB code :

function group = color(J);
[m,n] = size(J);
ng=0;
while there are ungrouped columns

�nd an ungrouped column c;
for i= 1: ng

if c doesn't intersect with any column in group i
assign it group i: group(c)=i;

end
end

if c is unassigned, assign it a new group :
ng=ng+1; group(c)=ng+1;

end
end

end

In the above code, J denotes the sparsity structure of the Jacobian matrix.
Two columns are said to \intersect" if they both have a nonzero in the same row
position. The main step of the algorithm consists of assigning each vertex in turn
the lowest numbered color not yet used by the neighbours. The order in which
the candidate columns are searched for is unspeci�ed in the algorithm given above.
Ordering based on graph coloring heuristics have proven to be e�ective [5]. One
such ordering, smallest degree ordering is the default ordering used in ADMIT-1.
The one-sided column method is just the transpose of column method, the same

coloring algorithm is used on the sparsity pattern of JT .

6.1.2 The Bi-coloring algorithms. The problems of �nding the best \bi-partition"
for both direct and substitution determination can be approached in the following
way. First, permute and partition the structure of J : ~J = P � J � Q = [JC jJR],
as indicated in Figure 3. The construction of this partition is crucial; however, we
postpone that discussion until after we illustrate its utility. Assume P = Q = I
and J = [JC jJR].

Second, de�ne appropriate intersection graphs GIC ;G
I
R based on the partition

[JC jJR]; a coloring of GIC yields a partition of a subset of the columns, GC , which
de�nes matrix V . MatrixW is de�ned by a partition of a subset of rows, GR, which
is given by a coloring of GIR. The di�erence between the direct and substitution
cases is in how the intersection graphs, GIC ;G

I
R, are de�ned, and how the nonzeroes

of J are extracted from the respective pair, (W TJ; JV ).

For this discussion, we omit the details on how the intersection graphs GIC ;G
I
R

are de�ned, for both the direct and substitution bi-coloring. For the algorithmic
details, refer to [14]. Once the intersection graphs are colored, the boolean matrices
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J

JC

R

J

J

C

R

Fig. 3. Possible partitions of the matrix ~J = P � J �Q

V and W can be formed in the usual way: each column corresponds to a group (or
color) and unit entries indicate column (or row) membership in that group:

Example: Consider the example Jacobian matrix structure shown in Figure 4
with the partition (JC ; JR) shown.

11 13

3531

42 44

52 53

32

23

14J J J

J

J J J

J J

J J

Fig. 4. Example Partition

The matrices V and W for this problem turn out to be :

V =

0
BBBB@

1 0 0
0 1 0
0 0 1
0 0 0
0 0 0

1
CCCCA JV =

0
BBBB@

J11 0 �
0 0 �
J31 � �
0 � 0
0 J52 J53

1
CCCCA

W =

0
BBBB@

1 0
0 1
1 0
0 1
0 0

1
CCCCA W T J =

�
� J32 J13 J14 J35
� J42 J23 J44 0

�
:

Clearly, all nonzero entries of J can be identi�ed in either JV or W TJ .
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Determination by substitution The basic advantage of determination by substi-
tution in conjunction with partition J = [JC jJR] is that sparser intersection graphs
GIC ;G

I
R can be used. Sparser intersection graphs mean thinner matrices V ,W which,

in turn, result in reduced cost.

All the elements of J can be determined from (W TJ; JV ) by a substitution
process. This is evident from the illustrations in Figure 5.

JR

JC

6

5
4

3

1

2

5

7

J

JR

C

8

6

4

3 1

2

Fig. 5. Substitution Orderings

Figure 5 illustrates two of four possible nontrivial types of partitions. The
nonzero elements in the section labeled \1" can be solved for directly { by the
construction process there will be no conict. Nonzero elements in \2" can either
be determined directly, or will depend on elements in section \1". But elements in
section \1" are already determined (directly) and so, by substitution, elements in
\2" can be determined after \1". Elements in section \3" can then be determined,
depending only on elements in \1" and \2", and so on until the entire matrix is
resolved.

Example. Consider again the example Jacobian matrix structure shown in
Figure 4.
The coloring of GC and GR leads to the following matrices V ,W and the resulting

computation of JV , W T J :

V =

0
BBBB@

1 0
0 1
1 0
0 0
0 0

1
CCCCA JV =

0
BBBB@

J11 + J13 0
� 0
J31 �
0 �
J53 J52

1
CCCCA

W =

0
BBBB@

1 0
0 1
1 0
0 1
0 0

1
CCCCA W TJ =

�
� J32 J13 J14 J35
� J42 J23 J44 0

�

It is now easy to verify that all nonzeroes of J can be determined via substitution.
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How to partition J.

We now consider the problem of obtaining a useful partition [JC jJR], and corre-
sponding permutation matrices P ,Q, as illustrated in Figure 3.
Algorithm MNCO builds partition JC from bottom up, and partition JR from

right to left. At the kth major iteration either a new row is added to JC or a new
column is added to JR, the choice depends on considering a lower bound e�ect:

�(JTR ) +max(�(JC); nnz(r)) < (�(JC) +max(�(JTR ); nnz(c)); (LB)

where �(A) is the maximum number of nonzeroes in any row of matrix A, r is a row
under consideration to be added to JC and c is a column under consideration to be
added to JR. Hence, the number of colors needed to color GIC is bounded below by
�(JC); the number of colors needed to color GIR is bounded below by �(JTR ).
In algorithm MNCO, matrix M = J(R;C) is the submatrix of J de�ned by

row indices R and column indices C: M consists of rows and columns of J not yet
assigned to either JC or JR.

Minimum Nonzero Count Ordering (MNCO)
(1) Initialize R = (1 : m), C = (1 : n), M = J(R;C)
(2) Find r 2 R with fewest nonzeroes in M
(3) Find c 2 C with fewest nonzeroes in M
(4) Repeat Until M = �

if �(JTR )+max(�(JC); nnz(r)) < (�(JC)+max(�(JTR ); nnz(c)) (LB)
JC=JC [ (r \ C)
R=R-frg

else
JR=JR [ (c \ R)
C=C-fcg

end if
M = J(R;C).

end repeat

Note that, upon completion, JR; JC have been de�ned; the requisite permutation
matrices are implicitly de�ned by the ordering chosen in MNCO.

6.1.3 Numerical results. We give some results here to illustrate the e�ectiveness
of the bi-coloring technique. The test function F 2 <n�n we use is a sample
nonlinear function which has a sparse Jacobian matrix having the structure shown
in Figure 2. Additional details are provided in [14]. Our results, shown in Figure
6, suggest the following order of execution time requirement by di�erent techniques
for the given test function:

FD > AD=row > AD=column > AD=bi � coloring(direct) > AD=bi � coloring(substitution):

In general, the above order will vary a little depending on the problem you are
solving, e.g. for the special case of computing gradient, typically the AD=row
method will be quicker than AD=column. However, the above order for the given
test function is typical for general nonlinear functions, e.g. for the problems with
results summarized in Tables 1 and 2.
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FD stands for the �nite-di�erencing method, AD=row;AD=column are the one-
sided methods. Note that FD requires more time than AD=column even though
the same coloring is used for both. This is because the work estimate tV � !(F ) is
actually an upper bound on the work required by the forward mode where tV is
the number of columns of V . In contrast, tV � !(F ) is tight for �nite-di�erencing
since the subroutine to evaluate F is actually called (independently) tV times.

Fig. 6. A comparison of di�erent sparse techniques

Another interesting observation is that the reverse mode calculation (AD/Row)
is about twice as expensive as the forward calculation (AD/Column). This is
noteworthy because in this example, based on the structure in Figure 1, the column
dimensions of V andW are equal, It may be pragmatic to estimate \weights"w1; w2,
with respect to a given AD tool, reecting the relative costs of forward and reverse
modes. It is very easy to introduce weights into algorithm MNCO to heuristically
solve a \weighted" problem, The heuristic MNCO can be changed to address this
problem by simply changing the conditional (LB) to:

if w1 � �(J
T
R ) +w2 �max(�(JC); nnz(r)) < w1 � �(JC) +w2 �max(�(JTR ); nnz(c)):

6.2 Algorithms for computing sparse Hessians

The algorithms we have implemented for this step are based on the work of Powell
and Toint [24] and Coleman and Mor�e [6].

(1) Ignoring the symmetry : Given the sparsity pattern of Hessian, SPH , sub-
routine ignhess (called by getHPI) determines a permutation p and a partition
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of the columns of H , consistent with the determination of all nonzeros H di-
rectly and independently. This routine is same as the one used for one-sided
column method for the Jacobians.

(2) Direct { exploiting symmetry : Given the sparsity pattern of Hessian,
SPH , subroutine dirhess (called by getHPI) determines a permutation p and a
partition of the columns of H , consistent with the determination of all nonzeros
H directly and exploiting the symmetry of H .
This method implements path coloring [6] :

Path coloring algorithm

Let G = (V;E) be the adjacency graph.

for k = 1; 2; : : :

(a) Let Uk be the set uncolored vertices. If Uk is empty, STOP.
(b) Sort the vertices in G(Uk), in decreasing order of degree.
(c) Build a vertex set Wk, by examining the vertices in Uk in the order

determined in step 2, and adding a vertex v to Wk , if there is not a path
between v and any vertex in Wk of length � 2.

(d) for each v in Wk , assign color(v) = k.

endfor

The array color determines the grouping of columns.

(3) Substitution { exploiting symmetry :
Given the sparsity pattern of Hessian, SPH , subroutine subhess (called by
getHPI) determines a permutation p and a partition of the columns of H ,
consistent with the determination of all nonzeros H by substitution.
This method requires cyclic coloring of the adjacency graph of the Hessian
matrix. The algorithm involved can be found in detail in Coleman and Cai [4].
In summary, the algorithm involves �nding a permutation �, such that columns
of L� (the lower triangular part of H(�; �)) in the same group do not intersect
in the same row position. So the algorithm involves two main steps :

(a) Find a permutation (using a heuristic scheme, using the symmetric mini-
mum degree works good) �, such that the column intersection graph of L�
is as sparse as possible.

(b) Color the intersection graph G(L�) to yield the column grouping g.

7. CHOOSING DIFFERENT COLORING METHODS

ADMIT-1 allows for usage of di�erent coloring method options, via the two func-
tions, getJPI and getHPI. In the following illustration, we demonstrate how to use
di�erent methods.

>> m=100; n=100;
>> JPId = getJPI(fun,m,n);  JPI for direct bi-coloring (default) method
>> JPIs = getJPI(fun,m,n,[],'s');  JPI for substitution bi-coloring method
>> JPIc = getJPI(fun,m,n,[],'c');  JPI for column coloring method

In the above illustration the sparsity pattern of the Jacobian is computed three
times. This is costly and it can be avoided:
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>> ....
>>
>> [JPId,SPJ] = getJPI(fun,m,n);  JPI for direct bi-coloring (default) method
>> JPIs = getJPI([],m,n,[],'s',SPJ);  JPI for substitution bi-coloring method
>> JPIc = getJPI([],m,n,[],'c',SPJ);  JPI for column coloring method

Similarly for Hessians :

>> n=100;
>> [HPIi,SPH] = getHPI(fun,n);  HPI for ignore symmetry (default) method
>> HPId = getHPI([],n,[],'d-a',SPH);  HPI for direct symmetry exploiting method
>> HPIs = getHPI([],n,[],'s-a',SPH);  HPI for substitution symmetry exploiting method

8. CONCLUDING REMARKS

The ADMIT-1 toolbox extends the MATLAB environment to provide a powerful
computing environment for large-scale optimization and sensitivity analysis. The
capability of doing automatic di�erentiation within MATLAB opens up a wide
range of applications which can easily use the AD technology.
The use of the ADMIT-1 tool with ADMAT as the plug-in tool is particularly in-

teresting. Since ADMAT is written in MATLAB, it can be used just like any MAT-
LAB toolbox without the need of external compilation steps (unlike the ADOL-C
plug-in). Also, ADMAT can be readily applied to any of the thousands of dif-
ferent functions present in MATLAB toolbox. With ADMAT, it is now possible
to di�erentiate through a variety of MATLAB toolboxes, thus enabling automatic
di�erentiation of complicated MATLAB applications (However, ADMAT cannot
di�erentiate through the MEX �les since it needs the full MATLAB source code to
work).
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APPENDIX

A. THE ADMIT-1 FUNCTIONALITY

In this section, we illustrate the high level functionality of ADMIT-1. First, we
describe the main functions evalJ and evalH both of which employ the algorithms
discussed in previous sections.

evalJ

Purpose

Compute the value of a di�erentiable vector mapping f and its' Jacobian J . Func-
tion evalJ is designed for the case where J is a sparse matrix.

Synopsis

f=evalJ(fun,x)

f=evalJ(fun,x,Extra)

f=evalJ(fun,x,Extra,m)

[f,J]=evalJ(fun,x,Extra,m,JPI)

[f,J]=evalJ(fun,x,Extra,m,JPI,verb)

[f,J]=evalJ(fun,x,Extra,m,JPI,verb,fdstep)

Description

f=evalJ(fun,x,Extra,m) Evaluate the function at the input argument x. The function
is assumed to be a square mapping with dimension de�ned by the length of x. The
�rst input argument, fun, is an integer handle identifying the target function. You
can provide a full matrix, Extra, to be used by your target function. Extra cannot be
a MATLAB sparse matrix. Scalar m is the row dimension of the vector mapping,
i.e., f : <n ! <m.

[f,J]=evalJ(fun,x,Extra,m,JPI) Evaluate the sparse Jacobian J at the point x. JPI
encodes the \coloring" information about the sparse matrix J . (See getJPI.) Dif-
ferent sparsity-exploiting methods are possible; the default sparse method is direct
determination using bi-coloring [14].

[f,J]=evalJ(fun,x,Extra,m,JPI,verb) Indicates the display level.

verb � 0 No display.

verb � 1 The number of groups used are displayed.

verb � 2 Information is displayed in graph form.

[f,J]=evalJ(fun,x,Extra,m,JPI,verb,fdstep) Scalar fdstep denotes the �nite di�erence
step size, for use when method = 'f'(see getJPI).

evalH

Purpose

Compute the value of a scalar-valued function, the gradient, and possibly the Hes-
sian matrix. When the Hessian matrix is computed, sparsity is exploited (using
graph-coloring techniques, etc. [8; 4])
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Synopsis

v=evalH(fun,x)

v=evalH(fun,x,Extra)

[v,grad]=evalH(fun,x,Extra)

[v,grad,H]=evalH(fun,x,Extra,HPI)

[v,grad,H]=evalH(fun,x,Extra,HPI,verb)

[v,grad,H]=evalH(fun,x,Extra,HPI,verb,fdstep)

Description

[v,grad]=evalH(fun,x,Extra) Determine the (scalar) value and gradient (dense vector)
of fun at the input argument x. The �rst input argument, fun, is an integer handle
identifying the user function. You can provide a full matrix, Extra, to be used by
your target function. Extra cannot be a MATLAB sparse matrix.

[v,grad,H]=evalH(fun,x,Extra,HPI) Evaluate the sparse Hessian matrix H at x. HPI
encodes the \coloring" information about H required to compute a compact rep-
resentation of H. (See getHPI.) Di�erent sparsity-exploiting methods are possible;
the default sparse method used is direct determination (ignoring the symmetry).

[v,grad,H]=evalH(fun,x,Extra,HPI,verb,fdstep) Scalar fdstep denotes the �nite di�er-
ence step size, for use when the �nite-di�erencing option is selected (see getHPI).

getJPI

Purpose

Compute sparsity and coloring information to allow for the eÆcient determination
of a (sparse) Jacobian matrix.

Synopsis

JPI= getJPI(fun, m)

JPI= getJPI(fun, m, n)

JPI= getJPI(fun, m, n,Extra)

JPI= getJPI(fun, m, n, Extra, method)

JPI= getJPI([], m, n, Extra, method, SPJ)

Description

JPI= getJPI(fun, m, n, Extra) encapsulates (in a MATLAB sparse matrix) the spar-
sity pattern and graph coloring information necessary to eÆciently compute the
sparse Jacobian matrix, the coloring determined corresponds to the default { direct
bi-coloring. The Jacobian matrix is assumed to be m � n. You can provide a full

matrix, Extra, to be used by your target function fun .

JPI= getJPI(fun, m, n,Extra, method) Overrides the default coloring.

method = 'd': direct bi-coloring (the default).

method = 's': substitution bi-coloring.
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method = 'c': one-sided column method.

method = 'r': one-sided row method.

method = 'f': sparse �nite-di�erence.

JPI= getJPI([], m, n,Extra, method, SPJ) You can supply SPJ, a sparse MATLAB
matrix representing the sparsity structure of the Jacobian matrix. The sparse
matrix structure SPJ is required on input when method = 'f'.

getHPI

Purpose

Compute the sparsity structure and graph coloring information for the sparse Hes-
sian matrix H.

Synopsis

HPI= getHPI(fun, n)

HPI= getHPI(fun, n, Extra)

HPI= getHPI(fun, n, Extra, method)

HPI= getHPI([], n, Extra, method, SPH)

Description

HPI= getHPI(fun, n, Extra) The sparsity structure and relevant coloring information
(to allow for eÆcient calculation of the sparse Hessian H) is encapsulated in HPI, a
sparse matrix. The default coloring corresponds to direct determination. You can
provide a full matrix, Extra, to be used by your target function (if required).

HPI= getHPI(fun, n,Extra,method) Overrides the default coloring.

method = 'i-a': The default, ignore the symmetry. Compute exactly using AD.

method = 'd-a': direct method [8], using AD.

method = 's-a': substitution method [4] using AD.

method = 'i-f': ignore the symmetry and use �nite di�erences(FD)

method = 'd-f': direct method [8] with FD.

method = 's-f': substitution method [4] with FD.

HPI= getHPI(fun, n,Extra,method,SPH) You can supply SPH, a sparse MATLAB
matrix representing the sparsity structure of the Hessian matrix. The sparse struc-
ture SPH is required as input when method = 's-f'.

B. THE AD TOOL DRIVERS

Additional functions for driving the plug-in AD tool are described in this section.
These drivers are all in form of MEX �les.
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forwprod

Purpose:

Computes the Jacobian matrix product, J � V , where J is the Jacobian of a non-
linear vector mapping and V is a matrix. The product is computed directly via
automatic di�erentiation { the cost is proportional to the number of columns in V .
Note: forwprod is particularly eÆcient when the number of columns of V is small.
Otherwise, when J is sparse it may be more eÆcient to compute J �rst (using evalJ
and exploiting sparsity) and then perform the multiplication.

Synopsis

[f,JV]=forwprod(fun,x,V)

[f,JV]=forwprod(fun,x,V,m)

[f,JV]=forwprod(fun,x,V,m,Extra)

Description

[f,JV]=forwprod(fun,x,V,m,Extra) returns the function value and the product JV
= J�V, evaluated at x. The row dimension of the Jacobian matrix is m. You can
provide a full matrix, Extra, for use in your target function \fun" (if required).

revprod

Purpose:

Compute W T � J where J = J(x) is the Jacobian matrix of a nonlinear vector
mapping and W is an arbitrary (consistent) matrix. The product is computed
directly via automatic di�erentiation with the computational cost proportional to
the number of columns in W . Note: revprod is particularly eÆcient when the
number of columns of W is small. Otherwise, when J is sparse it may be more
eÆcient to compute J �rst (using evalJ and exploiting sparsity) and then perform
the multiplication.

Synopsis

[f,WJ]=revprod(fun,x,W);

[f,WJ]=revprod(fun,x,W,Extra);

Description

[f,WJ]=revprod(fun,x,W,Extra) returns the function value and the product WJ =
(W T �J)T = JTW . You can provide a full matrix, Extra, to be used by your target
function \fun" (if required).

HtimesV

Purpose:

Compute H � V where H = H(x) is a Hessian matrix of a scalar-valued function
and V is a compatible matrix. Note: Function HtimesV is particularly eÆcient
when the number of columns of V is small. Otherwise, when H is sparse it may
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be more eÆcient to compute H �rst (using evalH and exploiting sparsity) and then
perform the multiplication.

Synopsis

HV=HtimesV(fun,x,V)

HV=HtimesV(fun,x,V,Extra)

Description

HV=HtimesV(fun,x,V,Extra) returns the product HV = H � V , where the Hessian
matrix H is evaluated at the given point x. You can provide a full matrix, Extra,
to be used (if required) by your target function \fun".

hesssp

Purpose:

Computes the sparsity pattern of the Hessian matrix.

Synopsis

SPH=hesssp(fun,n)

SPH=hesssp(fun,n,Extra)

Description

SPH=hesssp(fun,n,Extra) Returns the n � n sparsity structure of the Hessian ma-
trix. SPH is a MATLAB sparse matrix. Note the current point is not required: a
superstructure of the sparsity structure for all points x is returned. The structure
can be displayed by spy(SPH). You can provide a full matrix, Extra, to be used by
your target function \fun ", if required.

jacsp

Purpose:

Compute the sparsity pattern of the Jacobian matrix.

Synopsis

SPJ=jacsp(fun,m)

SPJ=jacsp(fun,m,n)

SPJ=jacsp(fun,m,n,Extra)

Description

SPJ=jacsp(fun,m,n,Extra) Returns the m � n sparsity structure of the Jacobian
matrix. SPJ is a MATLAB sparse matrix. You can provide a full matrix, Extra, to
be used by your target function \fun".


